163 research outputs found

    Reliability of thick Al wire: a study of the effects of wire bonding parameters on thermal cycling degradation rate using non-destructive methods

    Get PDF
    The effect of bonding parameters on the reliability of thick Al wire bond is investigated. Samples were prepared with 25 different designs with 5 different bonding parameters such as time, ultrasonic power, begin- force, end-force and touch-down steps (pre-compression) with 5 levels. The bond signals of ultrasonic generator were collected during bonding in order to obtain prior quality information of bonded wires. 3D x-ray tomography was then used to evaluate bond quality during passive thermal cycling between -55 °C and 125 °C. Tomography datasets were obtained from the as-bonded condition and during cycling. The results clearly show ultrasonic power, appropriate levels of begin-force and touch-down steps are all important for achieving a well attached and reliable bond. Analysis of the virtual cross-sections indicates a good correlation between the bond signal (i.e. the initial bond quality) and wire bond damage/ degradation rate. An improved understanding of the wire bonding process was achieved by observing the effect of the complex interaction of bonding parameters on the ultrasonic generator signals and degradation rate under thermal cycling

    Life expectancy can increase by up to 10 years following sustained shifts towards healthier diets in the United Kingdom

    Get PDF
    \ua9 2023, The Author(s).Adherence to healthy dietary patterns can prevent the development of non-communicable diseases and affect life expectancy. Here, using a prospective population-based cohort data from the UK Biobank, we show that sustained dietary change from unhealthy dietary patterns to the Eatwell Guide dietary recommendations is associated with 8.9 and 8.6 years gain in life expectancy for 40-year-old males and females, respectively. In the same population, sustained dietary change from unhealthy to longevity-associated dietary patterns is associated with 10.8 and 10.4 years gain in life expectancy in males and females, respectively. The largest gains are obtained from consuming more whole grains, nuts and fruits and less sugar-sweetened beverages and processed meats. Understanding the contribution of sustained dietary changes to life expectancy can provide guidance for the development of health policies

    VectorDisk: a microfluidic platform integrating diagnostic markers for evidence-based mosquito control

    Get PDF
    Effective mosquito monitoring relies on the accurate identification and characterization of the target population. Since this process requires specialist knowledge and equipment that is not widely available, automated field-deployable systems are highly desirable. We present a centrifugal microfluidic cartridge, the VectorDisk, which integrates TaqMan PCR assays in two feasibility studies, aiming to assess multiplexing capability, specificity, and reproducibility in detecting disk-integrated vector-related assays. In the first study, pools of 10 mosquitoes were used as samples. We tested 18 disks with 27 DNA and RNA assays each, using a combination of multiple microfluidic chambers and detection wavelengths (geometric and color multiplexing) to identify mosquito and malaria parasite species as well as insecticide resistance mechanisms. In the second study, purified nucleic acids served as samples to test arboviral and malaria infective mosquito assays. Nine disks were tested with 14 assays each. No false positive results were detected on any of the disks. The coe cient of variation in reproducibility tests was <10%. The modular nature of the platform, the easy adaptation of the primer/probe panels, the cold chain independence, the rapid (2-3 h) analysis, and the assay multiplexing capacity are key features, rendering the VectorDisk a potential candidate for automated vector analysis

    Efficient use of water for irrigation in the upper midwest

    Get PDF
    The objectives of this multidisciplinary interinstitutional regional study on the efficient use of water for irrigation in the upper Midwest were: (1) to determine parameters needed for existing or improved models of crop response; (2) to relate yield response to costs and revenues by assessing the water demand for irrigation; and (3) to study the demand for irrigation, present and projected, and its availability as related to public allocation decisions. From this series of studies it was concluded that: (1) There are many areas of the Midwest with sufficient groundwater and surface water resources to support the development of irrigation. (2) Soil moisture models indicate that only moderate yield response to irrigation can be expected on high moisture soils; on lighter soils and claypan soils, yield response is significant, even in regions with relatively high precipitation. (3) Irrigation and drainage on claypan soils can dramatically increase corn yields. (4) It appears economically worthwhile for the individual farmer operating on moderate soils or on claypan soils to evaluate capital investments in irrigation along with other capital investments. (5) Increases in yields and persistence of alfalfa due to irrigation appear to be insignificant when compared to conventional management practices; further research is needed. A potential, however, appears to exist for improving adaptation of a1 fa1 fa varieties to soil water deficits.U.S. Geological SurveyU.S. Department of the InteriorOpe

    Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors

    Full text link
    The development of highly-sensitive and miniaturized sensors that capable of real-time analytes detection is highly desirable. Nowadays, toxic or colorless gas detection, air pollution monitoring, harmful chemical, pressure, strain, humidity, and temperature sensors based on photonic crystal fiber (PCF) are increasing rapidly due to its compact structure, fast response and efficient light controlling capabilities. The propagating light through the PCF can be controlled by varying the structural parameters and core-cladding materials, as a result, evanescent field can be enhanced significantly which is the main component of the PCF based gas/chemical sensors. The aim of this chapter is to (1) describe the principle operation of PCF based gas/ chemical sensors, (2) discuss the important PCF properties for optical sensors, (3) extensively discuss the different types of microstructured optical fiber based gas/ chemical sensors, (4) study the effects of different core-cladding shapes, and fiber background materials on sensing performance, and (5) highlight the main challenges of PCF based gas/ chemical sensors and possible solutions

    Ensemble convolutional neural network classification for pancreatic steatosis assessment in biopsy images

    Get PDF
    Non-alcoholic fatty pancreas disease (NAFPD) is a common and at the same time not extensively examined pathological condition that is significantly associated with obesity, metabolic syndrome, and insulin resistance. These factors can lead to the development of critical pathogens such as type-2 diabetes mellitus (T2DM), atherosclerosis, acute pancreatitis, and pancreatic cancer. Until recently, the diagnosis of NAFPD was based on noninvasive medical imaging methods and visual evaluations of microscopic histological samples. The present study focuses on the quantification of steatosis prevalence in pancreatic biopsy specimens with varying degrees of NAFPD. All quantification results are extracted using a methodology consisting of digital image processing and transfer learning in pretrained convolutional neural networks for the detection of histological fat structures. The proposed method is applied to 20 digitized histological samples, producing an 0.08% mean fat quantification error thanks to an ensemble CNN voting system and 83.3% mean Dice fat segmentation similarity compared to the semi-quantitative estimates of specialist physicians

    Characteristics of Copper-based Oxygen Carriers Supported on Calcium Aluminates for Chemical-Looping Combustion with Oxygen Uncoupling (CLOU)

    Get PDF
    Eight different oxygen carriers (OC) containing CuO (60 wt %) and different mass ratios of CaO to Al2O3 as the support were synthesized by wet-mixing followed by calcination at 1000 °C. The method of synthesis used involved the formation of calcium aluminum hydrate phases and ensured homogeneous mixing of the Ca2+ and Al3+ ions in the support at the molecular level. The performance of the OCs for up to 100 cycles of reduction and oxidation was evaluated in both a thermogravimetric analyzer (TGA) and a fluidized bed reactor, covering a temperature range of 800 to 950 °C. In these cycling experiments, complete conversion of the OC, from CuO to Cu and vice versa, was always achieved for all OCs. The reactivity of the materials was so high that no deactivation could be observed in the TGA, owing to mass transfer limitations. It was found that OCs prepared with a mass ratio of CaO to Al2O3 in the support >0.55 agglomerated in the fluidized bed, resulting in an apparent deactivation over 25 cycles for all temperatures investigated. High ratios of mass of CaO to Al2O3 in the support resulted in CuO interacting with CaO, forming mixed oxides that have low melting temperatures, and this explains the tendency of these materials to agglomerate. This behavior was not observed when the mass ratio of CaO to Al2O3 in the support was ≤0.55 and such materials showed excellent cyclic stability operating under redox conditions at temperatures as high as 950 °C.The authors thank Mohammad Ismail and Matthew Dunstan for helping with the XRD analysis and Alex Casabuena-Rodriguez and for helping with the SEM. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC grant EP/I010912/1).This is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/acs.iecr.5b0117

    Spiral ligament fibrocyte-derived MCP-1/CCL2 contributes to inner ear inflammation secondary to nontypeable H. influenzae-induced otitis media

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Otitis media (OM), one of the most common pediatric infectious diseases, causes inner ear inflammation resulting in vertigo and sensorineural hearing loss. Previously, we showed that spiral ligament fibrocytes (SLFs) recognize OM pathogens and up-regulate chemokines. Here, we aim to determine a key molecule derived from SLFs, contributing to OM-induced inner ear inflammation.</p> <p>Methods</p> <p>Live NTHI was injected into the murine middle ear through the tympanic membrane, and histological analysis was performed after harvesting the temporal bones. Migration assays were conducted using the conditioned medium of NTHI-exposed SLFs with and without inhibition of MCP-1/CCL2 and CCR2. qRT-PCR analysis was performed to demonstrate a compensatory up-regulation of alternative genes induced by the targeting of MCP-1/CCL2 or CCR2.</p> <p>Results</p> <p>Transtympanic inoculation of live NTHI developed serous and purulent labyrinthitis after clearance of OM. THP-1 cells actively migrated and invaded the extracellular matrix in response to the conditioned medium of NTHI-exposed SLFs. This migratory activity was markedly inhibited by the viral CC chemokine inhibitor and the deficiency of MCP-1/CCL2, indicating that MCP-1/CCL2 is a main attractant of THP-1 cells among the SLF-derived molecules. We further demonstrated that CCR2 deficiency inhibits migration of monocyte-like cells in response to NTHI-induced SLF-derived molecules. Immunolabeling showed an increase in MCP-1/CCL2 expression in the cochlear lateral wall of the NTHI-inoculated group. Contrary to the <it>in vitro </it>data, deficiency of MCP-1/CCL2 or CCR2 did not inhibit OM-induced inner ear inflammation <it>in vivo</it>. We demonstrated that targeting MCP-1/CCL2 enhances NTHI-induced up-regulation of MCP-2/CCL8 in SLFs and up-regulates the basal expression of CCR2 in the splenocytes. We also found that targeting CCR2 enhances NTHI-induced up-regulation of MCP-1/CCL2 in SLFs.</p> <p>Conclusions</p> <p>Taken together, we suggest that NTHI-induced SLF-derived MCP-1/CCL2 is a key molecule contributing to inner ear inflammation through CCR2-mediated recruitment of monocytes. However, deficiency of MCP-1/CCL2 or CCR2 alone was limited to inhibit OM-induced inner ear inflammation due to compensation of alternative genes.</p

    Thermal-Chemical Characteristics of Al-Cu Alloy Nanoparticles

    Get PDF
    This work investigated the oxidation, ignition, and thermal reactivity of alloy nanoparticles of aluminum and copper (nAlCu) using simultaneous thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) method. The microstructure of the particles was characterized with a scanning electron microscope (SEM) and transmission electron microscope (TEM), and the elemental composition of the particles before and after the oxidation was investigated with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The particles were heated from room temperature to 1200 °C under different heating rates from 2 to 30 K/min in the presence of air. The complete oxidation process of the nAlCu was characterized by two exothermic and two endothermic reactions, and the reaction paths up to 1200 °C were proposed. An early ignition of nAlCu, in the temperature around 565 °C, was found at heating rates ≥ 8 K/min. The eutectic melting temperature of nAlCu was identified at ∼546 °C, which played a critical role in the early ignition. The comparison of the reactivity with that of pure Al nanoparticles showed that the nAlCu was more reactive through alloying
    corecore